Bellwork: Algebra 1

- 1. Write down your homework for the night in your planner.
- 2. Grab your Algebra Nation book.
- 3. Solve the following inequality, graph it, and write it in interval notation.

$$4(2x-10) \le 2(x+2) - 6$$

$$8x-40 \le 2x+4 - 6$$

$$8x-40 \le 2x-2$$

$$-2x - 2x$$

$$6x-40 \le -2$$

$$+40 + 40$$

$$6x \le 38$$

$$x \le 38$$

$$x \le 38$$

$$x \le 38$$

Section 2 – Topic 7 Solving Compound Inequalities

Consider the following options.

Option A: You get to play NBA 2K after you clean your

room and do the dishes.

Option B: You get to play NBA 2K after you clean your

room or do the dishes.

What is the difference between Option A and B?

Option a you would have to

do both.

Circle the statements that are true.

$$2+9=11 \text{ and } 10 < 5+6$$

$$\times$$
 4 + 5 \neq 9 and 2 + 3 > 0 \checkmark

$$\sqrt{0 > 4 - 6} \text{ or } 3 + 2 = 6$$

$$15 - 20 > 0$$
 or $2.5 + 3.5 = 7$

These are called **compound equations** or **inequalities**.

- When the two statements in the previous sentences were joined by the word AND, the compound equation or inequality is true only if _______ statements are true.
- When the two statements in the previous sentences were joined by the word OR, the compound equation or inequality is true if at least <u>ONC</u> of the statements is true. Therefore, it is also considered true if <u>oth</u> statements are true.

Let's graph x < 6 and x > 1.

This is the <u>graphic</u> representation to the compound inequality.

How many solutions does this inequality have?

infinite

Many times this is written as 1 < x < 6. This notation denotes the conjunction "and."

We read this as "x is greater than one $\frac{\partial}{\partial x}$ less than six."

Let's Practice!

1. Consider x < 1 or x > 6. Could we write the inequalities above as 1 > x > 6? Explain your answer.

2. Graph the solution set to each compound inequality on a number line.

b. x > 6 or x < 6

c. $1 \le -x \le 7$

1 < - 1

3. Write a compound inequality for the following graphs.

a. Compound inequality:

b. Compound inequality:

X2-2

Try It!

- Graph the solution set to each compound inequality on a number line.
 - a. x < 1 or x > 8

b. $x \ge 6$ or x < 4

 $C. \quad -6 \le x \le 4$

5. Write a compound inequality for the following graphs.

BEAT THE TEST!

 Use the terms and symbols in the table to write a compound inequality for each of the following graphs.
 You may only use each term once, but you do not have to use all of them.

3x	-14	-6	2	-	17	15	<
7x	<	2	or	<	3x	+	>

