
Bellwork: Algebra 1

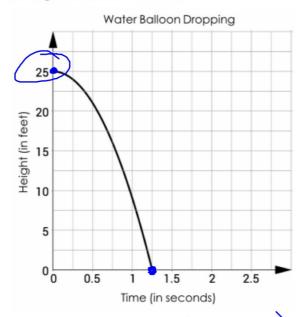
- 1. Write down your work for the week in your planner.
- 2. You will need your Algebra Nation book and a highlighter (2 if you have them)
- 3. Answer the following question in the TUESDAY section of your bellwork sheet.

The graph below represents a rock climber's height as she ascends a hill.

- a. The above graph is (circle or e) linear/nonlinear.
- c. What is the y-intercept and what does the y-intercept represent?

b. Is the above graph a function? Explain.

d. Why would there not be an x -intercept for this situation?



- An *x-intercept* of a graph is the location where the graph crosses the $\frac{X}{X}$
- The y-coordinate of the x-intercept is always
- The *y-intercept* of a graph is the location where the graph crosses the $\frac{1}{2}$.
- The x-coordinate of the y-intercept is always
- The x-intercept is the SO(D) to f(x) = 0.

All of these features are very helpful in understanding real-world context.

4. Consider the following graph that represents the height, in feet, of a water balloon dropped from a 2nd story window after a given number of seconds.

- a. What is the x-intercept?
- (1.25,0) (0,25) b. What is the y-intercept?
- c. Label the intercepts on the graph.

Try It!

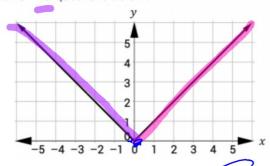
Refer to the previous problem for the following question
--

a. What does the y-intercept represent in this real-world The height he's throwing the water balloon from.

b. What does the x-intercept represent in this real-world The time it takes for
the balloon to hit the
yound
What is the solution to this situation?

c. What is the solution to this situation?

1.25 seconds


Section 3 – Topic 8 Key Features of Graphs of Functions – Part 2

Let's discuss other key features of graphs of functions.

- Domain: the input or the ____ values.
- > Range: the Other or the y-values.
- Increasing intervals: as the x-values IN CROSC, the y-values INCROSC,
- Pecreasing intervals: as the x-values $\frac{1}{\sqrt{2}}$ the y-values $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$
- Relative minimum: the point on a graph where the interval changes from a crass to

Let's Practice!

 Use the following graph of an absolute value function to answer the questions below.

a. Define the domain.

XIK

b. Define the range.

Y 2 0

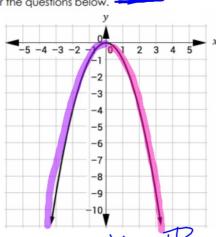
c. Where is the graph increasing?

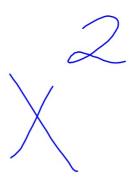
X > 0

All 11/11/15

d. Where is the graph decreasing?

X< 0

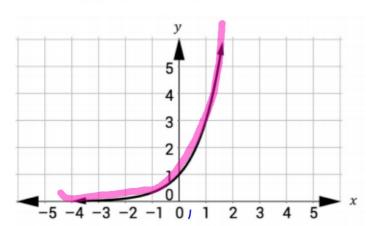

(0,0)


e. Identify any relative maximums.

No

f. Identify any relative minimums.

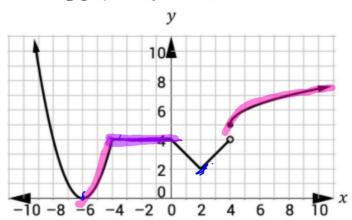
2. Use the graph of the following **quadratic function** to answer the questions below.



a. Define the domain.

Define the range.

- $\vee \leq C$
- c. Where is the graph increasing?
- X
- d. Where is the graph decreasing?
- X > O
- e. Identify any relative maximums.
- (0,0)
- f. Identify any relative minimums.


Describe everything you know about the key features of the following graph of an exponential function.

range y=0 increasing x=IR decrasing Never! No max or min

BEAT THE TEST!

1. The following graph is a piecewise function.

Which of the following statements are true about the graph? Select all that apply.

- The graph is increasing when the domain is -6 < x < -4.
- ☐ The graph has exactly one relative minimum.
- \square The graph is increasing when $-4 \le x \le 0$.
- The graph is increasing when x > 4.
- The graph is decreasing when the domain is
- ☐ The range is (y|u ≤ y < 4 u y = 1)
 </p>
- There is a relative minimum at (2,2).