Bellwork: Algebra 1

- 1. Happy Wednesday Everyone!
- 2. Write down your homework in your planner.
- 3. You just need a ruler.
- 4. Math Nation Test Yourself SECTION 4 is due NEXT WEDNESDAY 1/29
- 5. Answer the following question on your WEDNESDAY Bellwork:

Where would the shading be if we graphed the following inequality? y > 2x + 1

What would the line look like on the graph?

	Notes/Examples						
LINEAR	A 2-variable inequality on a						
INEQUALITY		ate plan		J			
SOLUTION	Any coordinate pair that makes it-true (Shaded area)						
to a Linear Inequality							
EVAMBLE	Determine which ordered pairs are solutions to the linear inequality below:						
EXAMPLE	2x - 3y < 15						
	(0.5)	>	(2 A)	(0.0)			
	(2, 5)	(-1,- 7)	(3, -4)	(0, 0)			
	2/2/31	2(-1)-3(-7)	(3, -4)) 4 \S	(0, 0)			
	2(2)-3(5)	2(-1)-3(-7) ~15	-	(0, 0)			
	2(2)-3(5) 4-15/15	2(-1)-3(-7) <15 > - 2+2 <) 4 \5	(0, 0)			
	2(2)-3(5) 4-15/15 -11<15	2(-1)-3(-7)) 4 \5	0.0)			
	2(2)-3(5) 4-15/15 -11<15	2(-1)-3(-7))415 15	0.0)			
	2(2)-3(5) 4-15/15	2(-1)-3(-7))415 15	(0, 0)			

GRAPHING	Graphing linear inequalities is a way to show ALL the ordered pairs that are solutions! Steps to graph:				
Linear Inequalities	10	Put the inequality in Slope Intarceptorm.			
	Step	Be sure to flip the inequality symbol if you multiply or divide by a negative number!			
	Step 2	 Graph the line! Use a Soll d line for or symbols. Use a da≤Ned line for or symbols. 			
	Step 3	 Shade! Shade or ≥ symbols. Shade or ≤ symbols. 			
	Ex	cample: $2x-3y<15$ $-2x -2x$ $-3y<-2x+15$			
	•	-3 - 3 = 3			
		7-3x-5			

Directions: Graph each linear inequality to show all possible solutions. $y \le -2x - 1$ 1. $y > \frac{1}{3}x - 5$

